Second-order, nonhomogeneous
Cauchy-Euler differential equation

Example

Solve
22y’ — ay — 3y = 22°

Solution

This is a nonhomogeneous Cauchy-Euler equation as it has the form
ax’y’ + bay' + cy = r(x)
Begin by finding the homogeneous solution. That is, solve
(1) 22y — 2y — 3y =0

For Cauchy-Euler equations we guess a solution of

So:

and

y =m(m—1)z™?

Putting these values into Equation (1) give us
m(m — 1)a™ — ma™ — 3z =0
Factoring out the 2™ term leaves us with
m(m—1)—m—-3=0
m?—2m —3=0

(m—=3)(m+1)=0
m=3orm=—1

This equation has two distinct real roots, so the homogeneous solution has the form

yn(z) = ar b+ ex?

Next we need to find a particular solution, y,(x). We can do this using the method of
Variation of Parameters. A particular solution is given by

(o) = | [ 22 e | [ 28 ] o,
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where y; = 27! and y, = 23 To find r(z) we need to make the coefficient of " equal to 1
in the original equation by dividing through by x2. That is

v 1 3

y — -y ——5 =21
T T

So r(z) = 2z.
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The general solution is given by the sum of the homogeneous solution and the partic-
ular solution:
y(x) = yn(2) + yp(2)
3 .3

Sy() =crh + er® — % + In |z
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